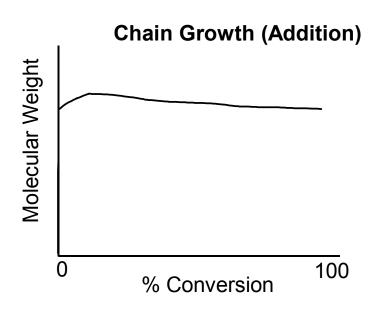
Radical Polymerizations I Chain Growth Basics

Devon A. Shipp

Department of Chemistry, & Center for Advanced Materials Processing Clarkson University Potsdam, NY 13699-5810

Tel. (315) 268-2393, Fax (315) 268-6610


dshipp@clarkson.edu

Chain Polymerizations

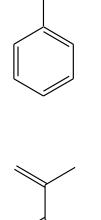
- Typical chain reaction
 - $I \rightarrow I^*$ Initiation
 - $I^* + M \rightarrow IM^* (=P_1^*)$
 - $P_n^* + M \rightarrow P_{n+1}^*$ Propagation
 - $\begin{array}{rrr} & P_n^* + & P_m^* \rightarrow & D_{n+m} \\ & \text{Termination} \end{array}$
 - $P_n^* + P_m^* \rightarrow D_n + D_n$ $P_n^* + A \rightarrow D_n + A^*$

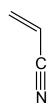
- * = reactive species
 - Radical
 - Anion
 - Cation

Olefinic Mononmers

	Type of Initiation			
Monomers	Radical	Cationic	Anionic	
Ethylene	+	-	+	
1-Alkyl olefins (α -olefins)	-	-	-	
1,1-Dialkyl olefins	-	+	-	
1,3-Dienes	+	+	+	
Styrene, α -methyl styrene	+	+	+	
Halogenated olefins	+	-	-	
Vinyl esters (CH ₂ =CHOCOR)	+	-	-	
Acrylates, methacrylates	+	-	+	
Acrylonitrile, methacrylonitrile	+	-	+	
Acrylamide, methacrylamide	+	-	+	
Vinyl ethers	-	+	-	
N-Vinyl carbazole	+	+	-	
N-Vinyl pyrrolidone	+	+	-	
Aldehydes, ketones	-	+	+	

Initiators and Solvents


- Initiators
 - Peroxides
 - Azo compounds
 - Redox
 - Thermal
 - UV
 - γ-rays


- Solvents
 - Danger of radical transfer to solvent
 - E.g. C₆H₆ is better than C₆H₅CH₃
 - Water is okay
 - Remove O₂
 - Formation of stable peroxide radicals

- ~~~O-O• (relatively stable)

Some Typical Conditions

- Styrene
 - Bulk, under N₂
 - 125° C, 1-7 days, M_n~150,000
- Methyl methacrylate (MMA)
 - Solution, 0.5% AIBN
 - − 1-2 days, 60°C, M_n~100,000
- Acrylonitrile
 - Emulsion, H₂O, N₂, surfactant
 - K₂S₂O₈/NaHSO₃ (redox)
 - $-35^{\circ}C$, 24 hrs, M_n~50,000

Elementary Reactions ...1

Initiation

– R• = primary radicals

 $- R_d = 2k_d[I] << R_i = k_i[R\bullet][M]$

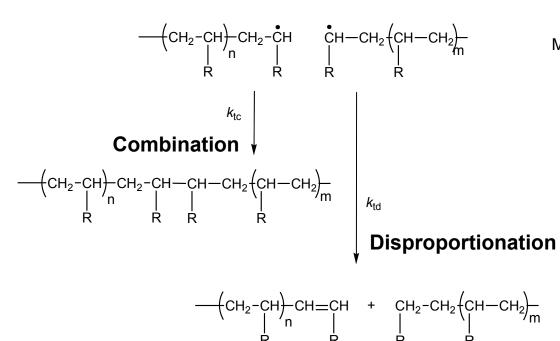
$$I \xrightarrow{k_{d}} 2 R \cdot$$

$$R \cdot + M \xrightarrow{k_{i}} M_{1} \cdot (R - M \cdot)$$

Propagation

 - R_p=k_p[R•][M]

$$M_{1}^{\bullet} + M \xrightarrow{k_{p1}} M_{2}^{\bullet}$$


$$M_{2}^{\bullet} + M \xrightarrow{k_{p2}} M_{3}^{\bullet}$$

$$M_{3}^{\bullet} + M \xrightarrow{k_{p3}} M_{4}^{\bullet}$$

$$M_{3}^{\bullet} + M \xrightarrow{k_{p3}} M_{4}^{\bullet}$$

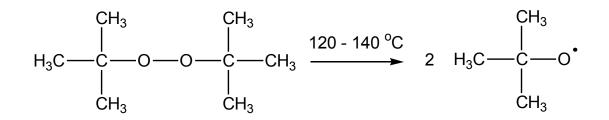
Elementary Reactions ...1

 Termination (radical-radical)

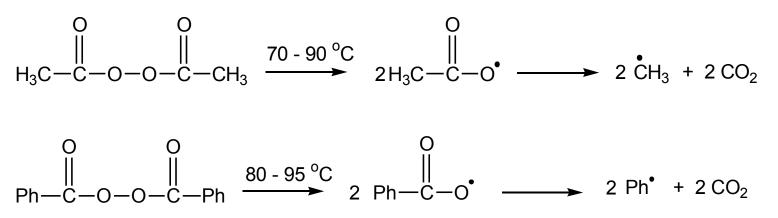
Transfer

 E.g. to monomer
 H

- Solvent
- Polymer
- Additives


Initiation

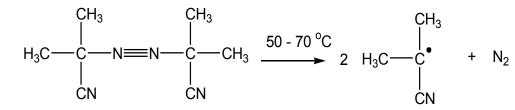
- Rate of radical formation
 - $d[R]/dt = 2 k_d [I]$
 - Typical values
 - $k_{\rm d} \sim 10^{-6} 10^{-4} \, {\rm s}^{-1}$
 - [I] ~ 0.01 M (0.1%)
 - $d[R]/dt \sim 10^{-8} 10^{-6} M s^{-1}$
- Temperature at which half lifetime = 10 hrs
 - Depends on initiator structure


 $- \tau_{1/2} = (\ln 2)/k_d$

Thermal Initiators ...1

- Peroxides
 - Dialkyl peroxides

Diacyl peroxides



Thermal Initiators ...2

- Hydroperoxides
 - Low efficiency $\begin{array}{c} \begin{array}{c} CH_{3} \\ H_{3}C - C - O - OH \end{array} \xrightarrow{70 - 90 \ ^{\circ}C} 2H_{3}C - C - O + OH \end{array} \xrightarrow{CH_{3}} H_{3}C - C - O - O + H_{2}O \\ H_{3}C - C - O - OH \end{array}$
- Azo initiators

Others

- AIBN
 - Azobisisobutyronitrile

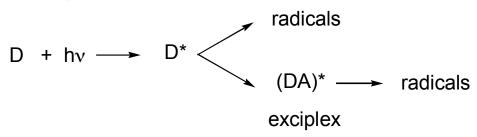
- R-N=N-R
- R = Me (250°C), isopropyl (200°C), PhC(H)Me (110°C), Me₂(CN)C (60°C), Ph₂CH (30°C)

Redox Initiators

- Advantages
 - Lower temperatures
 - Good solubilities
 - High initiation efficiency
 - One mole radicals per mole initiator

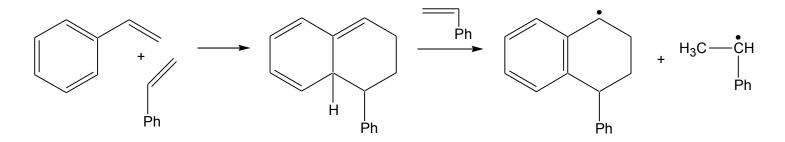
$$HO-OH + Fe^{2+} \longrightarrow HO^{\bullet} + OH^{-} + Fe^{3+}$$

$$RO-OH + Fe^{2+} \xrightarrow{15-30^{\circ}C} RO^{\bullet} + OH^{-} + Fe^{3+}$$

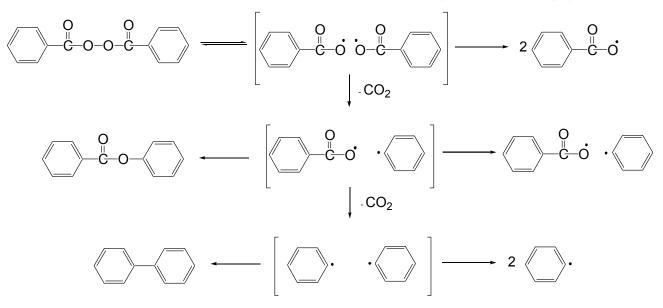

$$R_{3}N R'-C-O-O-C-R' \longrightarrow R_{3}N^{+} R'-C-O^{\bullet} - O-C-R'$$

$$-O-S-O-O-C-R' \longrightarrow R_{3}N^{+} R'-C-O^{\bullet} - O-C-R'$$

$$-O-S-O-O-S-O^{-} + Fe^{2+} \longrightarrow O-S-O^{-} - O-S-O^{-} + Fe^{3+}$$


Photochemical Initiator

- Advantages
 - Spatially directed polymerization
 - Easy to turn on/off
 - Initiation rates can be controlled
- Absorb light > 300 350nm
 - Dye-sensitized


Radiation & Pure Thermal

- Radiation
 - Neutrons, α -particles, β -rays, γ -rays, x-rays
 - Homolytic cleavage
- Pure thermal
 - Styrene

Initiation Efficiency

- Cage effect
 - $f = initiator efficiency \sim 0.3 0.8$
 - Dependent on conversion (viscosity)

- No cage effect for redox
 - One radical generated

Kinetics of Initiation

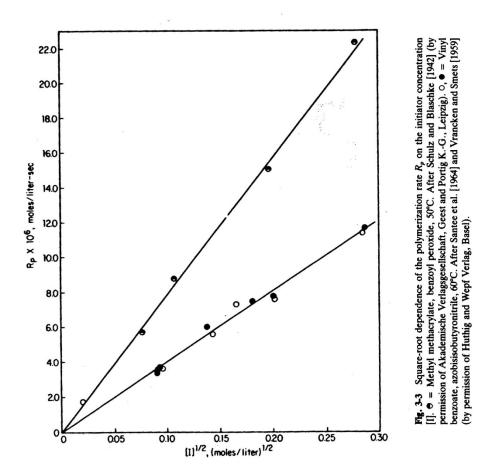
- Rate of initiation
 - Generation of radicals through thermal initiation
 - $R_d = 2 f k_d [I]$
 - Rate of change in primary radical concentration
 - $d[R_{\bullet}]/dt = 2 f k_d [I] k_i [R_{\bullet}] [M] = 0$
 - Steady-state assumption
 - Assumes f is invariant
 - Rearranging for [R•]
 - $[R_{\bullet}] = (2 f k_{d} [I])/(k_{i} [M])$
 - Assume decomposition is slowest step:

$$R_{i} = 2 f k_{d} [I]$$

Kinetics of Propagation

Rate of propagation

- » [M•] = polymer radical conc.
- » [R•] = primary radical conc.


- $-R_{p} = -d[M]/dt = k_{p} [M^{\bullet}] [M]$
 - Assumes that monomer only consumed during propagation
- $d[M\bullet]/dt = k_i [R\bullet] [M] 2 k_t [M\bullet]^2 = 0$
 - Assumes steady state for radical concentration
- $-2 f k_{\rm d} [I] 2 k_{\rm t} [M^{\bullet}]^2 = 0$

 $- [M\bullet] = (f k_d [I] / k_t)^{0.5}$

$$\boxed{\mathsf{R}_{\mathsf{p}} = \frac{\mathsf{d}[\mathsf{M}]}{\mathsf{d}\mathsf{t}} = k_{\mathsf{p}}[\mathsf{M}] \sqrt{\frac{2 f k_{\mathsf{d}}[\mathsf{I}]}{2 k_{\mathsf{t}}}}}}{\mathsf{R}_{\mathsf{p}} = \frac{\mathsf{d}[\mathsf{M}]}{\mathsf{d}\mathsf{t}} = k_{\mathsf{p}}[\mathsf{M}] \sqrt{\frac{\mathsf{R}_{\mathsf{i}}}{2 k_{\mathsf{t}}}}}$$

Rate of Polymerization

- Predictions:
 - 1st order in monomer
 - ½ order in initiator
- Plot of R_p vs. [I]^{0.5}
 Linear
- Classical kinetics justified (?)

G. Odian, *Principles of Polymerization*, 3rd edition, Wiley-Interscience, Hoboken, New Jersey.

Assumptions Made in Kinetic Analysis

- Propagation rate constant is constant
 - k_p is independent of chain length
- Termination rate
 constant is constant
 - *k*_t is independent of chain length
- Very long chains
 - Monomer only consumed in propagation

- One type of active site
 - Only head-to-tail addition
 - Otherwise (at least) 2 types of active sites
- Steady state
 - [M•] = constant (polymer)
 - [R•] = constant (primary)

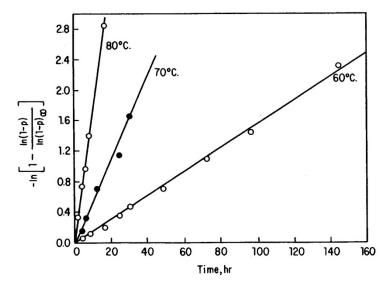
Kinetics for Photoinitiation ...1

- Rate of initiation
 - $-R_i = 2 \Phi I_a$
 - I_a = I₀ ϵ [A] b
 - Φ = quantum yield for initiation
 - I_a = intensity of light absorbed
 - I₀ = intensity of incident light
 - ε = extinction coefficient of A
 - A = molecule absorbing light
 - b = total thickness of reaction flask
- If absorbance does not vary with thickness

$$R_{p} = k_{p} [M] \sqrt{\frac{R_{i}}{k_{t}}} = k_{p} [M] \sqrt{\frac{2 \Phi I_{a}}{k_{t}}} = k_{p} [M] \sqrt{\frac{2 \Phi \varepsilon I_{0} [A] b}{k_{t}}}$$

Kinetics for Photoinitiation ...2

- If appreciable absorption
 - Beer-Lambert law
 - $I = I_0 (10^{-\epsilon} [A] b')$
 - b' = distance into reaction flask
 - I = intensity at distance b' into flask


$$-I_{a} = I_{0} - I$$

- Therefore: $R_{p} = k_{p} [M] \sqrt{\frac{2 \Phi I_{0} (1 - 10^{-\varepsilon[A]b'})}{k_{t}}}$

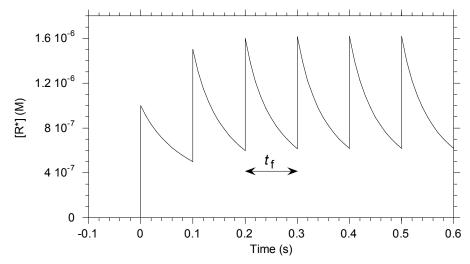
Dead-End Polymerization

- Measures k_d
- Low [Initiator]

$$-\ln\left[1 - \frac{\ln(1-p)}{\ln(1-p^{\infty})}\right] = \frac{k_{\mathrm{d}}t}{2}$$

- Initiator is consumed before polymerization is complete
 - p = extent of monomer conversion
 - p_{∞} = limiting extent of monomer conversion
- Plot LHS vs.
 time gives
 k_d as slope

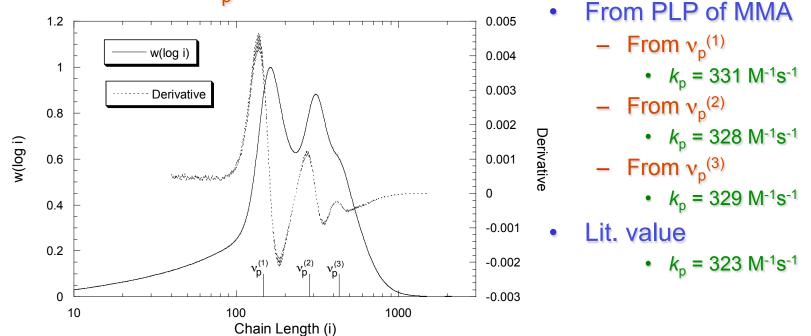
G. Odian, *Principles of Polymerization*, 3rd edition, Wiley-Interscience, Hoboken, New Jersey.


Fig. 3-6 Dead-end polymerization of isoprene initiated by azobisisobutyronitrile. After Gobran et al. [1960] (by permission of Wiley-Interscience, New York).

Non-Steady State Kinetics

- Steady state kinetics
 - Gives coupled form of (k_p^2/k_t)
- Non-steady state kinetics
 - Gives coupled form of (k_p/k_t)
- Combine both methods
 - Gives k_p and k_t individually
- Rotating sector method
 - Most common non-steady state method (until recently)
 - Determines average lifetime of a growing radical (τ_s)
 - Complex analysis yields (k_p/k_t)

Pulsed Laser Polymerization ...1


- Obtains k_p by itself
- Periodic initiation established by laser flashes
 - Initiation effectively instantaneous (10 ns)

- Propagation occurs between pulses
- Most termination occurs at time of laser pulses
 - Chains tend to start growth at laser pulse and terminate at a subsequent pulse

Pulsed Laser Polymerization ...2

- Average time for a propagation event
 - Avg. time = $1/(k_p[M])$
- Number of propagation events in time t_f
 - $v_p = k_p [M] t_f$
- Measure v_p from GPC, know $t_f \& [M]$ (low conversion)
 - Estimate k_{p}

24

Termination Rates

- Radical-radical termination
 - Fast; usually diffusion-controlled
 - $k_{\rm t} \sim 10^6 10^9 \,{\rm M}^{-1}{\rm s}^{-1}$
 - low conversion & viscosity
 - $-k_{\rm t}$ decreases with monomer conversion
 - From $\sim 10^9$ to 10^2 or less
- No method of unambiguously determining k_t
 - Viscosity dependent
 - Chain length dependent
 - $k_t(i,j)$ where i, j = radical chain lengths

How *k*_t Varies During Polymerization

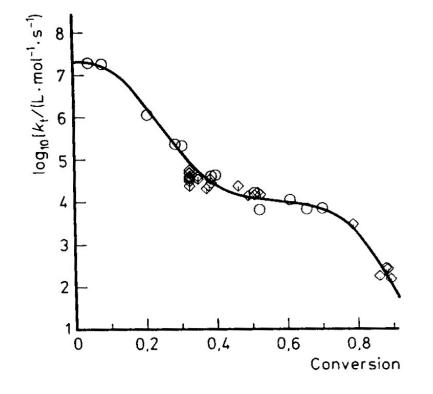


Fig. 6. Conversion dependence of k_t for the free-radical polymerization of methyl methacrylate. The experimental data are: (\bigcirc) from ref.⁸) (for 0°C) and (\diamond) from ref.⁹) (for 50°C). The full line represents k_t from Eq. (11) with the rate coefficients and kinetic parameters given in the text

M. Buback Macromol. Chem. Phys. 1990, 191, 1575-1587.

Termination Chemistry

- Two mechanisms
 - Combination (or coupling)
 - Disproportionation
- Proportions of both depend on monomer

%D %C

- Acrylonitrile ~0 ~100
- Styrene ~10 ~90
- Vinyl acetate ~10 ~90
- MMA ~60 ~40
 - More H's available \Rightarrow more disproportionation

Kinetic Chain Length

- Kinetic chain length = v
 - Number of monomer molecules per radical
 - $-v = R_p / R_i = R_p / R_t$ (steady state)

$$v = \frac{k_p[M]}{2k_t[radical]} = \frac{k_p^2[M]^2}{2k_tR_p}$$

- For thermolysis: $v = \frac{k_p[M]}{2(fk_dk_t[I])^{1/2}}$

- Increase R_p (through increase [radical])
 - Decrease in v

Molecular Weights ...1

- Average degrees of polymerization
 - Dependent on mode of termination
 - Disproportionation
 - Combination
- Define:
 - p = probability of propagation over termination or transfer

$$p = \frac{R_p}{R_p + R_{tr} + R_t}$$

Molecular Weights ...2

- Disproportionation
 - X_n = number average degree of polymerization = v
- Combination $- X_n = 2v$

$$X_{n} = \frac{2}{1-p}$$
 $X_{w} = \frac{2+p}{1-p}$

$$\frac{X_{w}}{X_{n}} = \frac{2+p}{2}$$

$$X_{n} = \frac{1}{1-p} \qquad X_{w} = \frac{1+p}{1-p}$$

$$\frac{X_{w}}{X_{n}} = 1 + p$$

- Transfer may occur to:
 - Monomer (M) Impurity

 - Solvent (S)
 - Polymer (P)Chain transfer agent (A)

$$M_{n}^{\bullet} + XA \xrightarrow{k_{tr}} M_{n}^{-}X + A^{\bullet}$$
$$A^{\bullet} + M \xrightarrow{k_{a}} M_{1}^{\bullet}$$

Case	Relativ	e Rates	Effect	R _p	X _n
1	$k_{\rm p} >> k_{\rm tr}$	k _a ∼ k _p	Normal	None	V
2	$k_{\rm p} << k_{\rm tr}$	k _a ∼ k _p	Oligomerization	None	Large ↓
3	$k_{\rm p} >> k_{\rm tr}$	<i>k</i> _a < <i>k</i> _p	Retardation	↓	Ļ
4	<i>k</i> _p << <i>k</i> _{tr}	k a< k p	Degradative Chain Transfer	Large ↓	Large ↓

- Transfer constants = C
 - Defined by the ratio of k_{tr}/k_p for a particular transfer agent E.g. monomer ($C_M = k_{tr,M}/k_p$), solvent ($C_S = k_{tr,S}/k_p$), etc.
- Redefine X_n:
 - Rate of polymerization divided by all chain-terminating processes

$$X_{n} = \frac{R_{p}}{R_{t} + R_{tr,M} + R_{tr,S} + \dots}$$
$$= \frac{k_{p}[M \cdot][M]}{k_{tc}[M \cdot]^{2} / 2 + k_{tr,M}[M \cdot][M] + k_{tr,S}[M \cdot][S] + \dots}$$

– Then rearrange

• After rearranging ...

$$\frac{1}{X_{n}} = \frac{k_{t}[M\cdot]}{2k_{p}[M]} \left(\frac{k_{p}[M]}{k_{p}[M]}\right) + \frac{k_{tr,M}}{k_{p}} + \frac{k_{tr,S}[S]}{k_{p}[M]} + \dots$$

$$\frac{1}{X_{n}} = \frac{k_{t}R_{p}}{k_{p}^{2}[M]^{2}} + C_{M} + C_{S}\frac{[S]}{[M]} + C_{I}\frac{k_{t}R_{p}^{2}}{k_{p}^{2}fk_{d}[M]^{3}}$$

- For transfer to monomer
 - $C_{\rm S}[S]/[M]$ & other terms vanish
 - Plot 1/X_n vs. R_p
 - Intercept yields C_M
 - Slope yields k_p^2/k_t

- Added transfer agent (A)
 - Dominates any transfer events
- Mayo equation:

$$\frac{1}{X_n} = \left(\frac{1}{X_n}\right)_0 + C_A \frac{[A]}{[M]}$$

- $-(1/X_n)_0$ = value of $(1/X_n)$ in absence of A
- Plot 1/X_n vs. [A]/[M]
 - Slope = $C_{\rm S}$

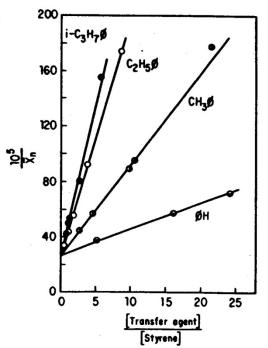
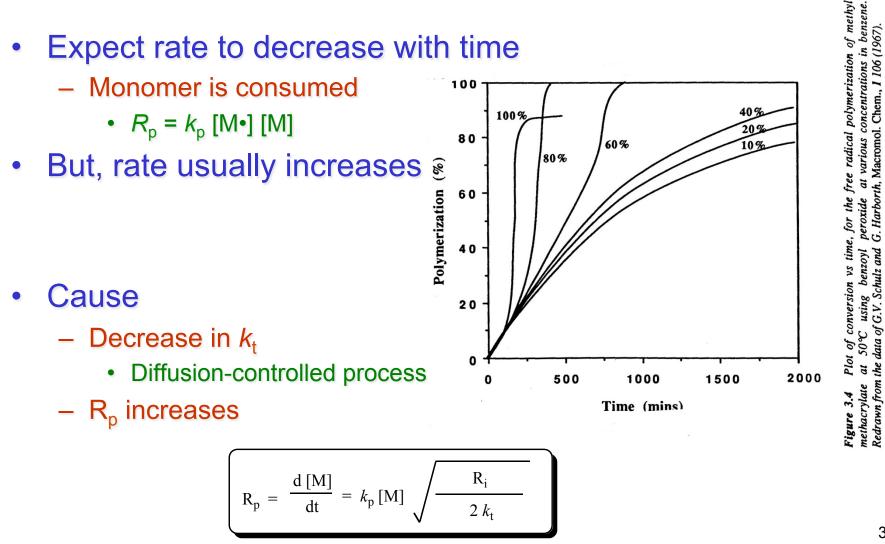


Fig. 3-10 The effect of various chain-transfer agents on the degree of polymerization of styrene at 100°C. After Gregg and Mayo [1948] (by permission of American Chemical Society, Washington, D.C.).

G. Odian, *Principles of Polymerization*, 3rd edition, Wiley-Interscience, Hoboken, New Jersey.


Transfer Agents & Constants

 Transfer agents and constants for styrene polymerization at 60°C

Transfer Agent	C _A
Benzene	1.0 × 10 ⁻⁶
Toluene	1.05 × 10 ⁻⁵
Butyl alcohol	6.0 × 10 ⁻⁶
t- Butyl alcohol	6.7 × 10 ⁻⁴
CBr ₄	1.8
CCl ₄	8.4 × 10 ⁻³
CHCl ₃	5 × 10 ⁻⁵
1-Octanethiol	19
Triethylamine	1.4 × 10 ⁻⁴
Water	0

- Alkyl thiols often used to control molecular weight

Gel Effect - Autoacceleration

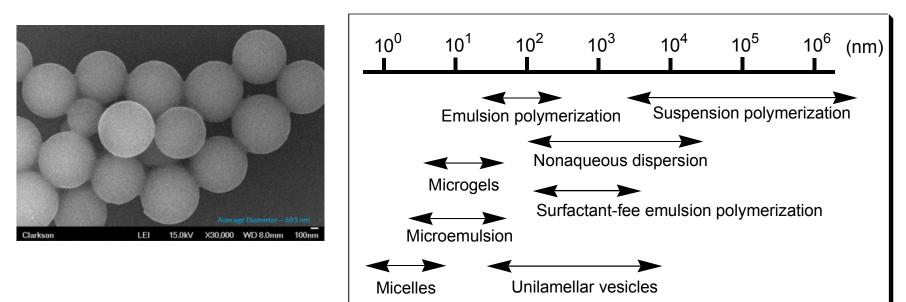
Ceiling Temperature

 Propagation as an equilibrium

$$\sim M \cdot + M \xrightarrow{k_p} \sim MM \cdot \frac{k_p}{k_{dp}}$$

$$- \Delta G = \Delta G^{\circ} + RT \ln K$$

• $K = k_p/k_{dp} = [\sim\sim MM \cdot]/[\sim\sim M \cdot][M]$ = 1/[M]


• At equilibrium ($\Delta G = 0$) - $\Delta H^{\circ} + T\Delta S^{\circ} = -RT \ln K$

$$T_c = \frac{\Delta H^{\circ}}{\Delta S^{\circ} + R \ln[M]_c} \quad \ln[M]_c = \frac{\Delta H^{\circ}}{RT_c} - \frac{\Delta S^{\circ}}{R}$$

- T_{c} = ceiling temperature
- [M]_c = equilibrium monomer conc.
- For α -methyl styrene
 - Neat, $T_c = 61^{\circ}C$
 - $T = 25^{\circ}C$, [M]_c = 2.2 M

Heterogeneous Radical Polymerizations

- Particle-forming polymerizations
 - Emulsion polymerizations
 - Mini-emulsion, micro-emulsion and emulsion
 - Dispersion polymerizations
 - Suspension polymerizations

Heterogeneous Polymerization ...1

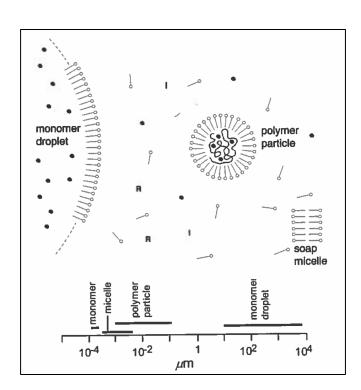
- Advantages
 - Bulk batch
 - Reduces effect of impurities
 - Bulk continuous
 - Better temperature control
 - Solution
 - Temperature control

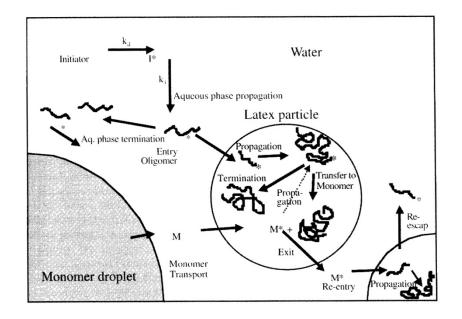
- Suspension
 - Temperature control
 - Low viscosity
 - Isolation
 - Size control
- Emulsion
 - Temperature control
 - Low viscosity
 - Latex product
 - High molecular weight & polymerization rate

Heterogeneous Polymerization ...2

- Disadvantages
 - Bulk batch
 - Temperature control difficult
 - High viscosity
 - Incomplete
 conversion possible
 - Bulk continuous
 - Isolation
 - Agitation required
 - Recycling

- Solution
 - Isolation
 - Chain transfer to solvent
 - Solvent removal
- Suspension
 - Agitation required to maintain suspension
 - Washing, drying
 - Removal of suspending agents (stabilizers)
- Emulsion
 - Sensitive to impurities
 - Removal of emulsifier maybe required
 - Cost


Suspension vs. Emulsion


Comparison of suspension and emulsion polymerizations

Suspension		Emulsion		
Monomer	35.7	Monomer	32.8	
H ₂ O	64.2	H ₂ O	65.6	
Poly(vinyl alcohol)	0.0143	$H(CH_2)_7CO_2^-NH_4^+$	1.64	
Laurel peroxide	0.0714	$K_2S_2O_8$	0.0328	
Size of monomer droplet (ϕ)		Size of monomer droplet (ϕ)		
	0.1-5 mm	10 ⁻⁴ mm (100nm)		

Weight %

Emulsion Polymerizations

Nucleation

- Micellar
 - Radicals from H₂O into micelle
- Homogeneous
 - Polymer radicals precipitate from H₂O

J. R. Fried, *Polymer Science & Technology*, 3rd edition, Pearson Education, Upper Saddle River, New Jersey.

Suspension Polymerization

- Monomer
 - Discontinuous suspension in a continuous phase (usually water)
- Initiators
 - Monomer-soluble
- Surfactants
 - Determine monomer droplet size
 - Control agglomeration

- Polymerizing droplets
 - Diameter of 50 500 micron
 - Heat removed easily
- Monomers
 - Styrene/divinyl benzene
 - Vinyl chloride, vinyl acetate
 - Methacrylic esters
 - Tetrafluoro ethylene
 - Homo- and co-polymers

Mini- & Micro-Emulsions, Precipitation

- Mini-emulsion polymerization
 - Similar to emulsions but droplet nucleation
- Micro-emulsion polymerization
 - An emulsion that is thermodynamically stable
 - Usually particles are 10-50 nm
- Precipitation polymerization

Dispersion Polymerizations

- Monomer
 - Homogeneous monomer phase in solvent (usually water)
 - Polymer is insoluble in solvent, therefore becomes heterogeneous
- Initiators
 - Monomer-soluble
- Surfactants
 - Stabilize polymer particles
 - Control agglomeration

- Polymerizing particles
 - Diameter of 1– 10 micron
 - Heat removed easily
- Monomers
 - Vinyl acetate
 - Methacrylates, acrylates
 - Homo- and co-polymers